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Abstract

We present an asymptotic approximation result concerning the order of
approximation of bivariate functions by means of the bidimensional operators
of the Gamma type operators, which was first given in [1] for one variable

functions and later was given for two variables function in [2].

1. Introduction

The aim of this present article is to give an asymptotic approximation
of bivariate functions, which have second partial derivatives and mixt
partial derivatives by means of bidimensional operators of the Gamma

type operators.
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Izgi and Biytikyazici [1] gave the following operators:
A(f: %) = [ Knle, 0,
0

(2n + 3) x"*3 y t"
n!(n + 2) (x +¢)2"*4

where K, (x,t) = For the process of these

operators, see [9], [10], and [1], respectively.

These operators preserve xz, which has better approximation than

which does not preserve x2, as it was shown by King in [8] for the
Bernstein polynomials.

It was studied rate of convergence of these operators for functions
with derivatives of bounded variation in [5] and also it was studied the
rate of pointwise convergence of these operators on the set of functions
with bounded variation in [6]. Also, it was studied direct local and global

approximation results for these operators in [7]. The present author

studied these operators for Voronovskaya type asymptotic approximation
in [4], also studied these operators for L?-integrable functions in [3], and

studied these operators for bivariate functions in the weighted spaces

with the following operators in [2]:

Ay o (Fu, v); %, y) = j j K, (x, WK, (v, 0)f(u, v)dudv. )
00

Lemma 1 ([2]).

Ay m(Lx, y) =15 2)

X
An,m(uw;x,y)=x+y—(n+2)—(m“i2); 3)

Ay (@® +0%5 2, y) = 2% + % “)
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3
3248 (5)
m

An’m(u?’ +0dx) =22+ 58 +%x
42n +3) 4 N 42m +3) 4

4 4. N_ 4 4
Ay (™ +u”x)=x" +y° + n(n—l)x m(m—l)y’

n>1m>1 (6)

An,m({u+v}_{x+y}; X, y):_(niZ)_(miZ)’ (7)
2 2. 2% 2y

An,m({(u_x) +(U_y) }’x’y)_(n+2)+(m+2)v (8)

An,m (1 - )+ -9 x ) = (n izé’)@n“(:lz 1) 2t (m iZS))ZnJ(Fr:)— 1) s,

n>1m>1. 9

2. Main Result

Let Dy shows (0, A]x (0, B], where A >0 and B > 0. Let

C"(Dyp) shows the continuous functions on D,p, which have
r-th (r =0, 1, 2, ...) partial derivatives and mixt partial derivatives. And
define
e;j = ejlx, y) = x'y/,
Ej:=Eju-x,v-y)=@w-x)v-y)Y, (Jj=012,..).

In this study, we aim to give an asymptotic approximation for the (1),

where m = n. Mean for the following operators:

Ay (f(u, v); %, y) = A, ,(fu, v); x, ¥)

- j j K, (x, WK, (7, 0)f(u, v)dudo. (10)
00
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Theorem 1. If f € C*(Dg), then we have

Tim (24 2)[ A4, (e, 0)s 2. )= Flo, )] =~ 5 o, 3) = y 5 £, 9)

9 0% 9 0%
+x” — f(x, )+ 3" — f(x, ¥).
ox oy

Proof. Using the corresponding Taylor series, then we have

f(u, v)

= flo )+ =) 2 f )+ 0= D)2 i )
2 2 2
' %[(u P T fle )+ = 2) (0~ ) [j—ay flo )+ gz Fl, y)j

2
+ (- y) aay—zf(x, y)} + (- %) e (- %)+ (v - y)ea(v ~ ¥)

+(u-x)(v-yesu-xv-y),
where the mappings ¢;(i = 1, 2, 3) are bounded and lim ¢;(h) = lim g4(h)
h—0 h—0

=0 and lim e3(hy, hy) = 0.
h1—>0
h2—>0

Now, we have the following inequality because of (10):

Ay (f(w, v); x, y) = f(x, ¥)

0 0
= An(Em; X, y)a flx, y)+ An(E01§ X, y)@ fx, y)

1 0> 1 0?
+ 5 An(Eg0; %, ¥) —5 f(x, ¥) + 5 An(EBog; %, y) —— f(x, ¥)
ox Oy

1 . *f(x, y)  *f(x, y) .
+ 9 An(Ell’ X, y){ oxdy + dyox + Rn(f’ X, y)’



ASYMPTOTIC APPROXIMATION OF BIDIMENSIONAL ... 5
where
R, (f; x, y) = Ap(e1(u - x)Eg; x, ) + Ap(e2(v - ¥)Eo2; x, ¥)
+ A, (e5(w —x, v—y)E | gEp1; x, ¥).

Using Lemma 1, we get

A (Flw, v); %, 3) - flx, ) = —ﬁ%m y)—ﬁ%f(x, »)

x2 2

(n+2) f( y)+ (+2) f(x y)

1 xy  |0%f(x,y) 9%f(x,y) N
+§(n+2)2{ 0xdy * dydx }+Rn(f,x,y),

and also we have

(n +2){A,(f(u, v); x, y) - fx, ¥)}

f(x y) - ki f(x y)+ x* —f(x )

+y —f(x y)+
oy”

xy {@ fx, 9) , 01, y)}

2 (n+2)| oxoy Oyox
+ (n + 2)R, (f; x, y).

It is obvious that

i L@y |8%f(x, 5) | O*f(x, 9)
nowo2 (n+2)| oxdy Oyox

} = 0 for (x, y) € Dyg. Now, we need
to prove r}gl}p(n +2)R,(f; x, ¥y) = 0 to complete the proof.

Define

Ny ={x,u)e N:|lu-x<8}, Ny={xu)eN:u-x=237}
My ={v,y)e M :|v-y| <8}, and finally, My = {(v, y) € M : v — y| = 8},

where N = (0, A]x (0, ) and M = (0, «)x (0, B].
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Now get ¢ > 0. Since %inb g;(h) = 0, there is §; >0( =1, 2) such
H

that for each |h| < §;, |¢;(h)| < & hold. Besides, since hlimo eg(hy, hg) =0
11—
h2—)0

then there is 83 > 0 such that for each VA% + k% < 83, [e3(h, k)| < &
hold. Choose & = max{8;, 85, 83}, then we have |¢;(h) < (i =1, 2), for
each |B| <& and |eg(h, k) <&, where VA% +k? <+/25. Then if

(ag, B1) € Ny, (a9, By) € My, then, we have

leg(Br —oq)[ < sup  [er(By —aq)| = [e1],s
(01,B1)eNy

lea(Be —ag)| < sup  |eg(Be —ag)| = [e2].,
(ag,Bg)eM

and

leg(Br —aq, Bg —ag)| < sup  [eg] = [es],,-
ay, By )elNg
(ag,Bo)eMy

2 4
|h| = & implies (%) > 1 and that implies A2 < h—2 and also |h| 2 8, |k = &
o

h22

implies Vgl >1 and i} | >1 and that implies |hk| < . Then, we have

| A (81(u = x) Ego; x, y)| = [An(81(w = 2) Ego; %, )|,y _y/cs
+ [Ap (21 (@ = %) Ego; %, ¥)ljy_yis5

22 le 1||

<8(n+2)

|4 (@ - )% x, )|

242 el  12(n+4) ot

2 2 me2nm-1)°
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for (x, y) € Dyp. Similarly,

2B2 N ||82||0O 12(n + 4) 4

|An(e2(v = y)Egg; x, y)| < & n+2) 2 me2nn-1) "

and

|45 (e5(u = x, v = y)EroEor; x, ¥)| <[An(e3(w - x, v = ¥)E10E01; %, ¥)ljy_yics
o=y/<3

+ |An(33(u - x,v-y)EEy; %, y)hu_x‘zs
[v-y=8

xy el 2 257

<8(n+2)2 §2 (n+2)(n+2)

AB lesll, 242 2B2

il 5 mi2 o)

Now, we can estimate (n + 2)R,,(f; x, y) for n — .

_ o el 120+4) 4
|(n + 2)R,(f; x, y)| < 24% + 52 (n+2n(n-1) A

o le2l,  12(n+4) 4
+ 2B% + 52 (n+2)n(n—1)B

AB sl 44°B
(n+2) 52 (n+2)°

That means
lim (n + 2)R,(f; x, y) = 0.
n—o

Then the proof is completed.

Note that; if we examine (1) instead of (10) in the Theorem 1, we will

get the following inequality:
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Lim min {(n.+ 2), (m + 2)} [4,, 5 (F(, v); 2, 9) = f(x, 3)]
2
< —x%f(x, y)—y%f(x, y)+xzai—2f(x, y)

5 0°
+ 57— fx, p).
oy

Example 1. Consider f(x, y) = (xy)*. Then % = 4x3y4,

2
of(x. y) _ g4 0 f(x2 ) - 1ax2yt, L’Céy) _ 125t y2
0 ox %y

D ) -y 2, 3+ 22O )4yt s )
6x b ay b axz b ay2 b

—4x* 4 — 4yt y +12x4y4 +12x4y4 =16x4y4

it (¢ 2 42

= (xy)4(1 + MT;

n(n —1)

(n + 2)[4, (o)’ 2, ¥) - ()]

~ 4(2n + 3))?
= (xy)'(n + 2) {(1 + n(n—jl)) - 1:|

_ (xy){s(zn $3)(1+2) (g 420 3)2}

n(n —1) n2 (n - 1)2 ’

Take lim on both side in the last equality, we get

n—o

;X Y)— (xy)4‘ = 16x4y4.
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