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Abstract 

We present an asymptotic approximation result concerning the order of 
approximation of bivariate functions by means of the bidimensional operators   
of the Gamma type operators, which was first given in [1] for one variable 
functions and later was given for two variables function in [2]. 

1. Introduction 

The aim of this present article is to give an asymptotic approximation 
of bivariate functions, which have second partial derivatives and mixt 
partial derivatives by means of bidimensional operators of the Gamma 
type operators. 
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Izgi and Büyükyazıcı [1] gave the following operators: 
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operators, see [9], [10], and [1], respectively. 

These operators preserve ,2x  which has better approximation than 

which does not preserve ,2x  as it was shown by King in [8] for the 

Bernstein polynomials.  

It was studied rate of convergence of these operators for functions 
with derivatives of bounded variation in [5] and also it was studied the 
rate of pointwise convergence of these operators on the set of functions 
with bounded variation in [6]. Also, it was studied direct local and global 
approximation results for these operators in [7]. The present author 
studied these operators for Voronovskaya type asymptotic approximation 

in [4], also studied these operators for  integrable-pL functions in [3], and 

studied these operators for bivariate functions in the weighted spaces 
with the following operators in [2]: 
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Lemma 1 ([2]). 
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2. Main Result 

Let ABD  shows ( ] ( ],,0,0 BA ×  where 0>A  and .0>B  Let 

( )AB
r DC  shows the continuous functions on ,ABD  which have 

th-r ( )K,2,1,0=r  partial derivatives and mixt partial derivatives. And 

define 
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In this study, we aim to give an asymptotic approximation for the (1), 
where .nm =  Mean for the following operators: 

( )( ) ( )( )yxvufAyxvufA nnn ,;,:,;, ,=  

( ) ( ) ( ) .,,,
00

dudvvufvyKuxK nn∫∫
∞∞

=   (10) 

 



AYDIN İZGİ 4

Theorem 1. If ( ),2
ABDCf ∈  then we have 
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Proof. Using the corresponding Taylor series, then we have 
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Now, we have the following inequality because of (10): 
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where 
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for ( ) ., ABDyx ∈  Similarly, 
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That means 
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Then the proof is completed. 

Note that; if we examine (1) instead of (10) in the Theorem 1, we will 

get the following inequality: 
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lim  on both side in the last equality, we get 
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